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Abstract— The growing deployment of wireless sensor networks (WSNs) in remote and challenging environments demands efficient
data collection methods that minimize energy consumption while ensuring comprehensive coverage. Traditional data collection
approaches face limitations when sensors are sparsely distributed across large areas, creating a critical need for optimized aerial
collection strategies. This study addresses these challenges by exploring the deployment of multiple unmanned aerial vehicles (UAVs)
for data collection tasks through an innovative hybrid approach. We combine multiple traveling salesman problem (mTSP)
methodology with Integer Linear Programming (ILP) to substantially reduce energy requirements while maintaining complete sensor
coverage. Our two-phase optimization methodology first employs ILP to establish strategic Access Points (APs) that cluster sensors
according to transmission capabilities, followed by mTSP to generate efficient flight paths between these APs rather than individual
sensors. We tested this methodology through comprehensive simulations across diverse network configurations and drone fleet sizes.
Results consistently show performance gains, with our hybrid strategy cutting travel requirements by up to 32% compared to standard
mTSP implementations. We've developed a novel sparsity indicator to measure clustering effectiveness, revealing that ILP-based
grouping advantages become more substantial as sensor density increases. This approach not only decreases computational complexity
by breaking the problem into manageable components but also enhances operational flexibility, allowing independent reconfiguration
of AP placement or drone routing as field conditions change. Applications span from environmental monitoring to emergency response
and agricultural intelligence, where resource-conscious data collection proves essential. Upcoming work will investigate dynamic
reconfiguration mechanisms and predictive optimization through machine learning integration.
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optimizing both the locations that allow for the collection of
I. INTRODUCTION data, also known as Access Points (APs), and the routing of
drones is essential to minimize energy consumption and
ensure timely data collection.

This paper explores the deployment of multiple UAVs for
data collection tasks using a hybrid approach that combines
Integer Linear Programming (ILP) [6] and the multiple
Traveling Salesman Problem (mTSP) [7], [8]. We aim to
minimize total energy consumption across all UAVs while
ensuring complete sensor nodes’ coverage.

Efficient data collection in large-scale sensor networks
remains a critical challenge, particularly in environments
where traditional infrastructure is impractical. Wireless
Sensor Networks (WSNs) [1] are increasingly deployed
across various applications including environmental
monitoring [2], precision agriculture [3], and disaster
response [4]. A fundamental challenge in these networks is
the efficient collection of data, especially when sensors do not
feature mobility capabilities, with limited communication A. Motivation & Contribution
range and energy resources. As noted by Balbal et al. [5],
efficient data collection strategies can significantly impact the
overall network performance.

Unmanned Aerial Vehicles (UAVs) or drones have
emerged as a promising solution for data collection in WSNs,
particularly in large, sparsely populated areas. However,

The integration of unmanned aerial vehicles for the
collection of data from ground sensors is a rapidly evolving
field, particularly with respect to operational efficiency and
resource optimization. The challenges of aerial data collection
require innovative approaches that can address both coverage
and routing problems simultaneously.



To this end, the contributions of this work can be
summarized as follows:

e Propose a two-phase optimization strategy that
utilizes (a) Integer Linear Programming for defining
Access Points to efficiently group sensors according
to their coverage range, and (b) Multi-Traveling
Salesman Problem to minimize drone travel
distances by visiting the APs instead of individual
Sensors.

e Perform simulated experimentation in order to
present the effectiveness of the proposed
methodology

This approach not only minimizes the number of APs
required but also optimizes drone paths, leading to significant
improvements in energy efficiency and scalability. The
primary benefit of separating the problem into two phases is
the reduction in computational complexity. The combined
problem of determining optimal AP locations and drone paths
simultaneously would be NP-hard and practically unsolvable
for large networks.

By using ILP first to determine AP locations that
minimize their number while ensuring each sensor is covered,
we effectively create a clustering of sensors. This reduces the
subsequent mTSP problem’s complexity since drones only
need to visit APs rather than all individual sensors.

The remainder of this paper unfolds as follows: Section
II examines relevant contributions, covering foundational
work of mTSP formulations and ILP techniques, alongside
recent developments in hybrid approaches that merge
clustering mechanisms with mobile collection strategies.
Section III elaborates on our proposed methodology, detailing
the two-phase optimization process where ILP determines
optimal access point placement followed by mTSP route
planning. Section IV encompasses our experimental
methodology, describing the test environment, presenting the
various network configurations examined, and analyzing
performance outcomes through comparative distance metrics
and clustering efficiency indicators. The paper concludes in
Section V with a synthesis of our findings and suggestions for
extending this research in emerging Internet of Things (IoT)
[9] contexts.

II. BACKGROUND AND RELATED WORK

A. WSN Data Collection Approaches

Research in WSNs” data collection has evolved
significantly over the past two decades [10], following several
distinct but interconnected paths focusing on mobile

collection, clustering  approaches, and integrated
methodologies.
1) Mobile Data Collectors (MDCs): The concept of

mobile elements for WSN data collection emerged in 2003
when Shah et al. introduced "Data MULEs" [11]. This
seminal work established a new paradigm for employing
mobile nodes to gather information from stationary sensors,
addressing the power constraints inherent in long-range
transmissions. Several researchers subsequently expanded
this foundational work.

Gatzianas and Georgiadis [12] developed sophisticated
linear programming models for resource allocation in WSNs

with mobile access points. Their work emphasized network
lifespan maximization while accounting for collector
movement patterns. Chakrabarti et al. [13] investigated
fundamental trade-offs between energy consumption and data
latency in mobile collection scenarios. Their study established
practical boundaries that continue to influence systems’
architecture decisions. These pioneering efforts collectively
shaped our understanding of mobile data collection in
wireless sensor environments.

2) AP/Cluster Head Selection: The selection of optimal
cluster heads or access points in wireless sensor networks
remains a crucial research challenge that has attracted
considerable attention. In [14], Heinzelman et al. developed
the LEACH (Low-Energy Adaptive Clustering Hierarchy)
protocol, now recognized as a pioneering and influential
protocol for WSN clustering. The innovation of LEACH lay
in its approach to spreading energy consumption across the
network through periodic rotation of cluster head
responsibilities among nodes.

Building on LEACH's foundation, Younis and Fahmy [15]
introduced HEED (Hybrid Energy-Efficient Distributed
clustering), which advanced clustering methodology by
incorporating both remaining energy levels and
communication costs as determining factors in the cluster’s
head selection process. This strategy notably extended
networks’ operational time compared to previous methods.
Gupta and Younis [16] specifically tackled the challenging
issue of fault-tolerant clustering, developing techniques to
bounce back from cluster heads’ failures and sustain network
connections despite losing nodes.

3) Combined Approaches: Various researchers have
investigated methods combining clustering elements with
data collection, resembling the two-phase strategy under
examination. One of the main differences between our
method and previous approaches lies in how APs are
conceptualized and used. Typically, related work treats APs -
or cluster heads - as logical nodes within the network that
gather sensor data and forward it using multi-hop
communication, without the need for physical access. Our
approach, however, takes a different route by treating APs as
real-world locations that drones must physically visit. This
redefinition turns APs from passive communication hubs into
active data collection points, directly tying their placement to
the drone’s travel route. This role of APs - as both clustering
anchors and compulsory drone checkpoints - marks a
significant shift from established practices and is central to the
performance gains demonstrated in our experiments.

Gandham et al. [17] presented an early dual-stage approach
employing ILP for determining base station locations
followed by route enhancement. Their work demonstrated the
benefits of breaking down complicated problems into more
manageable components.

Roberti and Ruthmair [18] created a mixed-integer linear
program (MILP) framework that synchronizes truck and
drones’ logistics, leveraging the speed of drones alongside the
capacity of trucks. Their methodology reflects a broader trend
within the literature that recognizes the importance of co-
deployment strategies involving different vehicle types, as it
serves to optimize delivery processes in various operational



settings. By aligning routing plans through ILP techniques
[19], significant efficiency enhancements can be achieved,
making it feasible for drones to cover greater distances with
optimized energy usage.

Similarly, Meskar and Ahmadi [20] in their study integrate
a realistic, load-dependent energy consumption function into
a mixed-integer linear programming framework, allowing
precise calculation of drone operational costs across various
flight phases. By comparing different routing strategies and
addressing demand uncertainty, the researchers therein
provide a comprehensive method for determining optimal
drone’s launching centers and delivery routes, demonstrating
the significant advantages of an integrated approach over
traditional sequential planning methods.

Moreover, the integration of advanced algorithms and
computational techniques within the ILP framework can
further enhance its applicability in dynamic environments.
For instance, adaptive algorithms that adjust to changing
environmental conditions can be developed to optimize AP’s
placement and routing strategies in real-time [21].

4) Specific Work on ILP + mTSP: Several research
teams have examined the particular combination of ILP for
selecting APs followed by mTSP for planning collection
paths. Castailo et al. [22] put forward a comparable approach
explicitly developed for urban monitoring using lIoT devices.
Their methodology employed ILP to determine the most
effective gateway locations before addressing the mTSP for
vehicles collecting data, demonstrating notable success in
dense city environments.

Gu et al. [23] introduced a two-phase optimization solution
for industrial WSNss, utilizing mixed-integer programming for
relaying nodes’ placement followed by route enhancements.
Their research addressed the specific constraints found in
industrial settings, including interference and reliability
demands.

Cornejo-Acosta et al. [24] presented innovative methods for
solving routing challenges across various mTSP variants by
developing compact mathematical models with reduced
computational complexity. Their proposal of integer
programming formulations offer flexible solutions for real-
world routing scenarios, demonstrating significant theoretical
and practical advantages in handling multiple salespersons'
routes without traditional depot constraints.

B. Benefits of Using Integer Linear Programming

ILP is particularly effective for problems involving discrete
variables, such as the placement of APs. Its primary benefit is
yielding optimal solutions for complex combinatorial
problems [25]. By formulating AP placement as an ILP, each
sensor can be covered by exactly one AP while minimizing
the total number of APs used [25].

ILP allows for the exploration of multiple objectives, such
as minimizing the number of APs while maximizing coverage
and connectivity. This multi-objective optimization is
particularly relevant in scenarios where environmental
conditions may vary, necessitating adaptive deployment
strategies [26]. The flexibility of ILP in accommodating
different constraints and objectives makes it a powerful tool
for network design and optimization [27], [28].

The findings of Kara and Bektas [29] suggest that solving
the mTSP directly using their ILP formulations is more
efficient than transforming it into a standard TSP. Similarly,
Wang et al. [30] provide a comprehensive framework for
aerial data collection in large-scale wireless sensor networks,
supporting the notion that effective AP placement leads to
significant improvements in data collection efficiency.

As researchers continue to bridge ILP with drone routing
complexities, it becomes evident that these methodologies
present a promising avenue for enhancing logistical
efficiencies across varied applications, from disaster relief to
commercial deliveries. In summary, the integration of Integer
Linear Programming within the paradigms of Access Points’
placement and multi-Traveling Salesman Problem analysis
for drones’ routing reveals a powerful capability for
enhancing operational efficiencies.

III. PROPOSED METHOD

As mentioned previously we propose a two-phase
optimization strategy.

A. Phase 1: ILP for APs’ Placement

This phase entails the modeling of the Access Points’
placement challenge as an Integer Linear Programming
problem. This approach enables the efficient clustering of
sensors based on their transmission capabilities.

In order to enhance the legibility of the work, we present it
by employing an example scenario: As illustrated in Fig. 1,
the initial configuration of the scenario consists of 20 static
sensor stations (S; ... S») distributed across a field. These
stations continuously collect data that must be retrieved. At
the designated launchpad (H), three drones are stationed for
deployment to collect the data from the distributed sensors.

s . I
@ @ - e
) o i () A
(E}(g ® @ (iﬁ) A w

“
P 5 ®
&
A
) ) @ 2
B A (@t-)) (K)
S

Fig. 1 A random placement of sensor stations in a field.

By applying the ILP algorithm, we have grouped stations
according to their data transmission range capabilities. The
results of this optimization are depicted in Fig. 2, where
distinct clusters have been formed. These newly established
groups, designated as Access Points, are clearly demarcated
with circular boundaries in the illustration, wherein the center
of the boundary is identified by the ILP and the radius is 100
units.



_ — & 55 \ T ’ \
T~ ~ () |/ - $14 Y
fon ooy \{s'i)/ 3N @ é‘a 1 & \ \, (fé’l(m)\
) () (p) | e : V4 A | \ ( J’,"
(@@t e ) g e "
7SN
(ﬁ) |
N s
vy w‘ |; (sz) \
/ 6,0 (2)
[ )
-t o / )

Fig. 2 Application of ILP for APs’ definitions.

These optimized Access Points now serve as consolidated
collection locations, significantly streamlining the flight paths
required for the drones to retrieve all sensors’ data. Rather
than visiting each individual sensor, the drones now need only
visit these strategically positioned Access Points.

B. Phase 2: mTSP for Drone Path Planning

The second phase leverages the mTSP methodology,
applying it to the newly established Access Points
(4AP;...AP;>) from Fig. 2 rather than addressing each sensor
individually. With the same deployment plan as stated before,
i.e. three drones, Fig. 3 demonstrates the optimized results,
with the drones flying a total distance of 4,805 units. Drone 1
flies the orange route (H, AP;», AP>, APs, AP;;, H) covering
1,767 units. Drone 2 flies the blue route (H, APy, AP, AP,
APs, H) covering 1,571 units and drone 3 flies the green route
(H, AP;, APs, AP 9, AP3, H) covering 1,467 units.
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Fig. 3 Application of mTSP on the APs.

To evaluate the effectiveness of this strategic approach, we
conducted a parallel analysis applying mTSP directly to the
original configuration illustrated in Fig. 1, i.e. before the
application of the ILP and the formation of the clusters / APs.
Using identical parameters - the same number drones and
identical launch location - Fig. 4 displays these results,
showing a total required travel distance of 5,054 units. Drone
1 flies the orange route (H, Si3, Ss Ss, Sz Sz, Sis, S7, H)
covering 1,894 units. Drone 2 flies the blue route (H, Si, Si,
S4, Si9, S11, So, S5, H) covering 1,770 units and drone 3 flies
the green route (H, Ss, Si2, Sis, Sis, S17, S3, H) covering 1,390
units.
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Fig. 4 Application of mTSP on the stations without use of ILP / APs.

A comparative examination of both approaches reveals
significant operational benefits. The optimized approach in
Fig. 3 requires navigation to only 12 collection points,
whereas the conventional approach in Fig. 4 necessitates
visits to all 20 original locations. This strategic consolidation
translates to considerable reduction on the required travel
distance when implementing the Access Point methodology.

This efficiency improvement on travel distance units
demonstrates the tangible operational advantages of the
hierarchical routing strategy through intermediate
aggregation points.

C. Benefits of the Two-Phase Approach

After determining optimal APs’ locations through ILP in
the first phase, the second phase uses the mTSP framework to
optimize drone routing for data collection. This approach
treats the previously determined APs as nodes in a graph, with
drones functioning as multiple salesmen tasked with visiting
these nodes. The objective is to reduce the overall journey
length or duration while guaranteeing that each AP receives
exactly one visit from exactly one drone.

By formulating the problem this way, we can generate
efficient flight paths for multiple drones, balancing workload
across the fleet while minimizing energy consumption.

This methodology scales well with network expansion.
When new sensors are introduced, the number of required
APs may not increase proportionally, particularly if these
sensors are positioned within the communication range of
existing APs as it will be shown in the experimentation
section herein.

In addition, a significant advantage of this decoupled two-
phase approach is its adaptability to dynamic field conditions.
Modifications in sensor deployment or operational status can
be addressed by reconfiguring APs’ placements while
maintaining existing drone paths, where feasible. Conversely,
changes in drone fleet composition or availability can be
managed by adjusting routing solutions without necessitating
alterations to the established AP infrastructure.

Finally, this sequential approach significantly reduces
computational complexity compared to attempting to
optimize both APs’ placement and drones’ routing
simultaneously.

IV.EXPERIMENTAL EVALUATION

A. The Setup

To model the Access Point selection as an ILP problem, we
adapted the mTSP framework from our prior research [31],
[32] and leveraged Google OR-Tools [33] to simplify the
implementation of ILP-based solutions. The code was



developed in C# using the NET framework. All tests were
conducted on a high-performance system with the following
specifications: 512 GB of RAM, an AMD® Ryzen
Threadripper Pro 5955WX processor (16 cores, 32 threads,
4.0 GHz base clock), and four NVIDIA RTX A5000
(GA102GL) GPUs.

We generated 80 distinct flight plans, each representing a
different scenario. These scenarios explored a range of station
densities, specifically 5, 10, 15, 20, 25, 45, 60, and 100
stations, while accommodating varying drone counts from 1
to 10. To mitigate potential statistical variations arising from
randomized stations’ locations, each scenario was executed
10 times, yielding 800 total test runs (80 scenarios X 10
iterations). The results were averaged to ensure statistical
reliability.

B. Evaluation Results

To assess the effectiveness of our approach, we used two
key metrics:

e Performance Improvement: Measures the gains
achieved (in percentage) by the two-phase method
compared to using mTSP alone

e Sparsity Ratio: Indicates how efficiently access
points are distributed relative to the number of
stations. A ratio near to 1 suggests one access point
per station, while a lower ratio implies shared access
points among multiple stations.

The results obtained from the experiments are depicted in
Fig. 5: the graph demonstrates a clear trend that aligns well
with the theoretical expectations described herein on the two-
phase optimization approach involving ILP and mTSP.
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Fig. 5 Distance performance by applying ILP for APs first and then mTSP.

1) Performance Analysis: The performance metric, in
percentage, shows consistent improvement across all tested
scenarios.

The performance advantage increases substantially with
network size. For small networks with 5-25 stations, the
improvement ranges from 3-7%. However, for larger
networks with 45-100 stations, the improvement jumps
significantly to 16-32%.

The most dramatic performance gain occurs in the largest
tested network of 100 stations, where the two-phase approach
reduces travel distance by nearly one-third (32%) compared
to the direct mTSP approach.

2) Sparsity Analysis: The sparsity metric reveals
important insights about the efficiency of the ILP phase. The
sparsity decreases steadily as the number of stations increases,
from 0.9 for 5 stations to 0.3 for 100 stations. This indicates
that the clustering advantage becomes more pronounced in
larger networks.

In small networks with 5 stations, nearly all stations serve
as Access Points (sparsity = 0.9), offering minimal clustering
benefit. However, in the largest network with 100 stations,
only 30% of stations need to serve as Access Points.

The inverse relationship between sparsity and performance
improvement confirms the paper's theoretical framework: as
more stations can be clustered under fewer Access Points, the
efficiency gain of the two-phase approach increases.

V. CONCLUSION

Our research demonstrates that combining ILP and mTSP
creates a powerful framework for drone-based data collection
in wireless sensor networks. The two-phase approach - using
ILP for strategic Access Point’s placement first, then applying
mTSP for flight path optimization - offers significant
advantages over single-stage methods.

Breaking complex problems into sequential stages
dramatically reduces computational demands in large-scale
deployments. Our tests reveal that this hierarchical approach
not only improves scalability but also extends drones’ battery
life through more efficient routing. The framework effectively
balances energy constraints with operational requirements.

These methodologies have broad applications beyond
academic interest. Environmental monitoring programs,
emergency responses’ coordination, and commercial delivery
systems can all benefit from the efficiency gains observed
herein.

Future research directions might explore dynamic
reconfiguration mechanisms that adapt both APs’ placement
and flight paths in real-time. Incorporating predictive
optimization through machine learning techniques could
further enhance systems’ performance.

With Internet of Things ecosystems rapidly expanding,
these sophisticated optimization approaches will become
increasingly vital for building sustainable data collection
infrastructures capable of addressing future challenges.
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