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Abstract— The growing deployment of wireless sensor networks (WSNs) in remote and challenging environments demands efficient 

data collection methods that minimize energy consumption while ensuring comprehensive coverage. Traditional data collection 

approaches face limitations when sensors are sparsely distributed across large areas, creating a critical need for optimized aerial 

collection strategies. This study addresses these challenges by exploring the deployment of multiple unmanned aerial vehicles (UAVs) 

for data collection tasks through an innovative hybrid approach. We combine multiple traveling salesman problem (mTSP) 

methodology with Integer Linear Programming (ILP) to substantially reduce energy requirements while maintaining complete sensor 

coverage. Our two-phase optimization methodology first employs ILP to establish strategic Access Points (APs) that cluster sensors 

according to transmission capabilities, followed by mTSP to generate efficient flight paths between these APs rather than individual 

sensors. We tested this methodology through comprehensive simulations across diverse network configurations and drone fleet sizes. 

Results consistently show performance gains, with our hybrid strategy cutting travel requirements by up to 32% compared to standard 

mTSP implementations. We've developed a novel sparsity indicator to measure clustering effectiveness, revealing that ILP-based 

grouping advantages become more substantial as sensor density increases. This approach not only decreases computational complexity 

by breaking the problem into manageable components but also enhances operational flexibility, allowing independent reconfiguration 

of AP placement or drone routing as field conditions change. Applications span from environmental monitoring to emergency response 

and agricultural intelligence, where resource-conscious data collection proves essential. Upcoming work will investigate dynamic 

reconfiguration mechanisms and predictive optimization through machine learning integration. 
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I. INTRODUCTION 

Efficient data collection in large-scale sensor networks 

remains a critical challenge, particularly in environments 

where traditional infrastructure is impractical. Wireless 

Sensor Networks (WSNs) [1] are increasingly deployed 

across various applications including environmental 

monitoring [2], precision agriculture [3], and disaster 

response [4]. A fundamental challenge in these networks is 

the efficient collection of data, especially when sensors do not 

feature mobility capabilities, with limited communication 

range and energy resources. As noted by Balbal et al. [5], 

efficient data collection strategies can significantly impact the 

overall network performance. 

Unmanned Aerial Vehicles (UAVs) or drones have 

emerged as a promising solution for data collection in WSNs, 

particularly in large, sparsely populated areas. However, 

optimizing both the locations that allow for the collection of 

data, also known as Access Points (APs), and the routing of 

drones is essential to minimize energy consumption and 

ensure timely data collection. 

This paper explores the deployment of multiple UAVs for 

data collection tasks using a hybrid approach that combines 

Integer Linear Programming (ILP) [6] and the multiple 

Traveling Salesman Problem (mTSP) [7], [8]. We aim to 

minimize total energy consumption across all UAVs while 

ensuring complete sensor nodes’ coverage.  

A. Motivation & Contribution 

The integration of unmanned aerial vehicles for the 

collection of data from ground sensors is a rapidly evolving 

field, particularly with respect to operational efficiency and 

resource optimization. The challenges of aerial data collection 

require innovative approaches that can address both coverage 

and routing problems simultaneously. 



To this end, the contributions of this work can be 

summarized as follows: 

• Propose a two-phase optimization strategy that 

utilizes (a) Integer Linear Programming for defining 

Access Points to efficiently group sensors according 

to their coverage range, and (b) Multi-Traveling 

Salesman Problem to minimize drone travel 

distances by visiting the APs instead of individual 

sensors. 

• Perform simulated experimentation in order to 

present the effectiveness of the proposed 

methodology 

This approach not only minimizes the number of APs 

required but also optimizes drone paths, leading to significant 

improvements in energy efficiency and scalability. The 

primary benefit of separating the problem into two phases is 

the reduction in computational complexity. The combined 

problem of determining optimal AP locations and drone paths 

simultaneously would be NP-hard and practically unsolvable 

for large networks. 

By using ILP first to determine AP locations that 

minimize their number while ensuring each sensor is covered, 

we effectively create a clustering of sensors. This reduces the 

subsequent mTSP problem’s complexity since drones only 

need to visit APs rather than all individual sensors. 

The remainder of this paper unfolds as follows: Section 

II examines relevant contributions, covering foundational 

work of mTSP formulations and ILP techniques, alongside 

recent developments in hybrid approaches that merge 

clustering mechanisms with mobile collection strategies. 

Section III elaborates on our proposed methodology, detailing 

the two-phase optimization process where ILP determines 

optimal access point placement followed by mTSP route 

planning. Section IV encompasses our experimental 

methodology, describing the test environment, presenting the 

various network configurations examined, and analyzing 

performance outcomes through comparative distance metrics 

and clustering efficiency indicators. The paper concludes in 

Section V with a synthesis of our findings and suggestions for 

extending this research in emerging Internet of Things (IoT) 

[9] contexts. 

II. BACKGROUND AND RELATED WORK 

A. WSN Data Collection Approaches 

Research in WSNs’ data collection has evolved 

significantly over the past two decades [10], following several 

distinct but interconnected paths focusing on mobile 

collection, clustering approaches, and integrated 

methodologies. 

1)   Mobile Data Collectors (MDCs): The concept of 

mobile elements for WSN data collection emerged in 2003 

when Shah et al. introduced "Data MULEs" [11]. This 

seminal work established a new paradigm for employing 

mobile nodes to gather information from stationary sensors, 

addressing the power constraints inherent in long-range 

transmissions. Several researchers subsequently expanded 

this foundational work. 

   Gatzianas and Georgiadis [12] developed sophisticated 

linear programming models for resource allocation in WSNs 

with mobile access points. Their work emphasized network 

lifespan maximization while accounting for collector 

movement patterns. Chakrabarti et al. [13] investigated 

fundamental trade-offs between energy consumption and data 

latency in mobile collection scenarios. Their study established 

practical boundaries that continue to influence systems’ 

architecture decisions. These pioneering efforts collectively 

shaped our understanding of mobile data collection in 

wireless sensor environments. 

2)   AP/Cluster Head Selection: The selection of optimal 

cluster heads or access points in wireless sensor networks 

remains a crucial research challenge that has attracted 

considerable attention. In [14], Heinzelman et al. developed 

the LEACH (Low-Energy Adaptive Clustering Hierarchy) 

protocol, now recognized as a pioneering and influential 

protocol for WSN clustering. The innovation of LEACH lay 

in its approach to spreading energy consumption across the 

network through periodic rotation of cluster head 

responsibilities among nodes. 

   Building on LEACH's foundation, Younis and Fahmy [15] 

introduced HEED (Hybrid Energy-Efficient Distributed 

clustering), which advanced clustering methodology by 

incorporating both remaining energy levels and 

communication costs as determining factors in the cluster’s 

head selection process. This strategy notably extended 

networks’ operational time compared to previous methods. 

Gupta and Younis [16] specifically tackled the challenging 

issue of fault-tolerant clustering, developing techniques to 

bounce back from cluster heads’ failures and sustain network 

connections despite losing nodes. 

3)   Combined Approaches: Various researchers have 

investigated methods combining clustering elements with 

data collection, resembling the two-phase strategy under 

examination. One of the main differences between our 

method and previous approaches lies in how APs are 

conceptualized and used. Typically, related work treats APs - 

or cluster heads - as logical nodes within the network that 

gather sensor data and forward it using multi-hop 

communication, without the need for physical access. Our 

approach, however, takes a different route by treating APs as 

real-world locations that drones must physically visit. This 

redefinition turns APs from passive communication hubs into 

active data collection points, directly tying their placement to 

the drone’s travel route. This role of APs - as both clustering 

anchors and compulsory drone checkpoints - marks a 

significant shift from established practices and is central to the 

performance gains demonstrated in our experiments. 

   Gandham et al. [17] presented an early dual-stage approach 

employing ILP for determining base station locations 

followed by route enhancement. Their work demonstrated the 

benefits of breaking down complicated problems into more 

manageable components. 

   Roberti and Ruthmair [18] created a mixed-integer linear 

program (MILP) framework that synchronizes truck and 

drones’ logistics, leveraging the speed of drones alongside the 

capacity of trucks. Their methodology reflects a broader trend 

within the literature that recognizes the importance of co-

deployment strategies involving different vehicle types, as it 

serves to optimize delivery processes in various operational 



settings. By aligning routing plans through ILP techniques 

[19], significant efficiency enhancements can be achieved, 

making it feasible for drones to cover greater distances with 

optimized energy usage.  

   Similarly, Meskar and Ahmadi [20] in their study integrate 

a realistic, load-dependent energy consumption function into 

a mixed-integer linear programming framework, allowing 

precise calculation of drone operational costs across various 

flight phases. By comparing different routing strategies and 

addressing demand uncertainty, the researchers therein 

provide a comprehensive method for determining optimal 

drone’s launching centers and delivery routes, demonstrating 

the significant advantages of an integrated approach over 

traditional sequential planning methods. 

   Moreover, the integration of advanced algorithms and 

computational techniques within the ILP framework can 

further enhance its applicability in dynamic environments. 

For instance, adaptive algorithms that adjust to changing 

environmental conditions can be developed to optimize AP’s 

placement and routing strategies in real-time [21]. 

4)   Specific Work on ILP + mTSP: Several research 

teams have examined the particular combination of ILP for 

selecting APs followed by mTSP for planning collection 

paths. Castaño et al. [22] put forward a comparable approach 

explicitly developed for urban monitoring using IoT devices. 

Their methodology employed ILP to determine the most 

effective gateway locations before addressing the mTSP for 

vehicles collecting data, demonstrating notable success in 

dense city environments. 

   Gu et al. [23] introduced a two-phase optimization solution 

for industrial WSNs, utilizing mixed-integer programming for 

relaying nodes’ placement followed by route enhancements. 

Their research addressed the specific constraints found in 

industrial settings, including interference and reliability 

demands.  

  Cornejo-Acosta et al. [24] presented innovative methods for 

solving routing challenges across various mTSP variants by 

developing compact mathematical models with reduced 

computational complexity. Their proposal of integer 

programming formulations offer flexible solutions for real-

world routing scenarios, demonstrating significant theoretical 

and practical advantages in handling multiple salespersons' 

routes without traditional depot constraints. 

B. Benefits of Using Integer Linear Programming 

ILP is particularly effective for problems involving discrete 

variables, such as the placement of APs. Its primary benefit is 

yielding optimal solutions for complex combinatorial 

problems [25]. By formulating AP placement as an ILP, each 

sensor can be covered by exactly one AP while minimizing 

the total number of APs used [25]. 

ILP allows for the exploration of multiple objectives, such 

as minimizing the number of APs while maximizing coverage 

and connectivity. This multi-objective optimization is 

particularly relevant in scenarios where environmental 

conditions may vary, necessitating adaptive deployment 

strategies [26]. The flexibility of ILP in accommodating 

different constraints and objectives makes it a powerful tool 

for network design and optimization [27], [28]. 

The findings of Kara and Bektas [29] suggest that solving 

the mTSP directly using their ILP formulations is more 

efficient than transforming it into a standard TSP. Similarly, 

Wang et al. [30] provide a comprehensive framework for 

aerial data collection in large-scale wireless sensor networks, 

supporting the notion that effective AP placement leads to 

significant improvements in data collection efficiency. 

As researchers continue to bridge ILP with drone routing 

complexities, it becomes evident that these methodologies 

present a promising avenue for enhancing logistical 

efficiencies across varied applications, from disaster relief to 

commercial deliveries. In summary, the integration of Integer 

Linear Programming within the paradigms of Access Points’ 

placement and multi-Traveling Salesman Problem analysis 

for drones’ routing reveals a powerful capability for 

enhancing operational efficiencies. 

III. PROPOSED METHOD 

As mentioned previously we propose a two-phase 

optimization strategy. 

A. Phase 1: ILP for APs’ Placement 

This phase entails the modeling of the Access Points’ 

placement challenge as an Integer Linear Programming 

problem. This approach enables the efficient clustering of 

sensors based on their transmission capabilities. 

In order to enhance the legibility of the work, we present it 

by employing an example scenario: As illustrated in Fig. 1, 

the initial configuration of the scenario consists of 20 static 

sensor stations (S1 ... S20) distributed across a field. These 

stations continuously collect data that must be retrieved. At 

the designated launchpad (H), three drones are stationed for 

deployment to collect the data from the distributed sensors. 

 

 

Fig. 1  A random placement of sensor stations in a field. 

By applying the ILP algorithm, we have grouped stations 

according to their data transmission range capabilities. The 

results of this optimization are depicted in Fig. 2, where 

distinct clusters have been formed. These newly established 

groups, designated as Access Points, are clearly demarcated 

with circular boundaries in the illustration, wherein the center 

of the boundary is identified by the ILP and the radius is 100 

units. 



 

 
Fig. 2  Application of ILP for APs’ definitions. 

These optimized Access Points now serve as consolidated 

collection locations, significantly streamlining the flight paths 

required for the drones to retrieve all sensors’ data. Rather 

than visiting each individual sensor, the drones now need only 

visit these strategically positioned Access Points. 

B. Phase 2: mTSP for Drone Path Planning 

The second phase leverages the mTSP methodology, 

applying it to the newly established Access Points 

(AP1...AP12) from Fig. 2 rather than addressing each sensor 

individually. With the same deployment plan as stated before, 

i.e. three drones, Fig. 3 demonstrates the optimized results, 

with the drones flying a total distance of 4,805 units. Drone 1 

flies the orange route (H, AP12, AP2, AP6, AP11, H) covering 

1,767 units. Drone 2 flies the blue route (H, AP9, AP4, AP1, 

AP8, H) covering 1,571 units and drone 3 flies the green route 

(H, AP7, AP5, AP10, AP3, H) covering 1,467 units. 

 

 

Fig. 3  Application of mTSP on the APs. 

 
To evaluate the effectiveness of this strategic approach, we 

conducted a parallel analysis applying mTSP directly to the 

original configuration illustrated in Fig. 1, i.e. before the 

application of the ILP and the formation of the clusters / APs. 

Using identical parameters - the same number drones and 

identical launch location - Fig. 4 displays these results, 

showing a total required travel distance of 5,054 units. Drone 

1 flies the orange route (H, S13, S6, S8, S2, S20, S14, S7, H) 

covering 1,894 units. Drone 2 flies the blue route (H, S10, S1, 

S4, S19, S11, S9, S5, H) covering 1,770 units and drone 3 flies 

the green route (H, S18, S12, S15, S16, S17, S3, H) covering 1,390 

units. 

 

 
Fig. 4  Application of mTSP on the stations without use of ILP / APs. 

A comparative examination of both approaches reveals 

significant operational benefits. The optimized approach in 

Fig. 3 requires navigation to only 12 collection points, 

whereas the conventional approach in Fig. 4 necessitates 

visits to all 20 original locations. This strategic consolidation 

translates to considerable reduction on the required travel 

distance when implementing the Access Point methodology. 

This efficiency improvement on travel distance units 

demonstrates the tangible operational advantages of the 

hierarchical routing strategy through intermediate 

aggregation points. 

C. Benefits of the Two-Phase Approach 

After determining optimal APs’ locations through ILP in 

the first phase, the second phase uses the mTSP framework to 

optimize drone routing for data collection. This approach 

treats the previously determined APs as nodes in a graph, with 

drones functioning as multiple salesmen tasked with visiting 

these nodes. The objective is to reduce the overall journey 

length or duration while guaranteeing that each AP receives 

exactly one visit from exactly one drone. 

By formulating the problem this way, we can generate 

efficient flight paths for multiple drones, balancing workload 

across the fleet while minimizing energy consumption.  

This methodology scales well with network expansion. 

When new sensors are introduced, the number of required 

APs may not increase proportionally, particularly if these 

sensors are positioned within the communication range of 

existing APs as it will be shown in the experimentation 

section herein.  

In addition, a significant advantage of this decoupled two-

phase approach is its adaptability to dynamic field conditions. 

Modifications in sensor deployment or operational status can 

be addressed by reconfiguring APs’ placements while 

maintaining existing drone paths, where feasible. Conversely, 

changes in drone fleet composition or availability can be 

managed by adjusting routing solutions without necessitating 

alterations to the established AP infrastructure. 

Finally, this sequential approach significantly reduces 

computational complexity compared to attempting to 

optimize both APs’ placement and drones’ routing 

simultaneously. 

IV. EXPERIMENTAL EVALUATION 

A. The Setup 

To model the Access Point selection as an ILP problem, we 

adapted the mTSP framework from our prior research [31], 

[32] and leveraged Google OR-Tools [33] to simplify the 

implementation of ILP-based solutions. The code was 



developed in C# using the .NET framework. All tests were 

conducted on a high-performance system with the following 

specifications: 512 GB of RAM, an AMD® Ryzen 

Threadripper Pro 5955WX processor (16 cores, 32 threads, 

4.0 GHz base clock), and four NVIDIA RTX A5000 

(GA102GL) GPUs. 

We generated 80 distinct flight plans, each representing a 

different scenario. These scenarios explored a range of station 

densities, specifically 5, 10, 15, 20, 25, 45, 60, and 100 

stations, while accommodating varying drone counts from 1 

to 10. To mitigate potential statistical variations arising from 

randomized stations’ locations, each scenario was executed 

10 times, yielding 800 total test runs (80 scenarios × 10 

iterations). The results were averaged to ensure statistical 

reliability. 

B. Evaluation Results 

To assess the effectiveness of our approach, we used two 

key metrics: 

• Performance Improvement: Measures the gains 

achieved (in percentage) by the two-phase method 

compared to using mTSP alone 

• Sparsity Ratio: Indicates how efficiently access 

points are distributed relative to the number of 

stations. A ratio near to 1 suggests one access point 

per station, while a lower ratio implies shared access 

points among multiple stations. 

The results obtained from the experiments are depicted in 

Fig. 5: the graph demonstrates a clear trend that aligns well 

with the theoretical expectations described herein on the two-

phase optimization approach involving ILP and mTSP. 

 

 

Fig. 5  Distance performance by applying ILP for APs first and then mTSP. 

1)   Performance Analysis: The performance metric, in 

percentage, shows consistent improvement across all tested 

scenarios.  

   The performance advantage increases substantially with 

network size. For small networks with 5-25 stations, the 

improvement ranges from 3-7%. However, for larger 

networks with 45-100 stations, the improvement jumps 

significantly to 16-32%. 

   The most dramatic performance gain occurs in the largest 

tested network of 100 stations, where the two-phase approach 

reduces travel distance by nearly one-third (32%) compared 

to the direct mTSP approach. 

2)   Sparsity Analysis: The sparsity metric reveals 

important insights about the efficiency of the ILP phase. The 

sparsity decreases steadily as the number of stations increases, 

from 0.9 for 5 stations to 0.3 for 100 stations. This indicates 

that the clustering advantage becomes more pronounced in 

larger networks. 

In small networks with 5 stations, nearly all stations serve 

as Access Points (sparsity = 0.9), offering minimal clustering 

benefit. However, in the largest network with 100 stations, 

only 30% of stations need to serve as Access Points. 

The inverse relationship between sparsity and performance 

improvement confirms the paper's theoretical framework: as 

more stations can be clustered under fewer Access Points, the 

efficiency gain of the two-phase approach increases. 

V. CONCLUSION 

Our research demonstrates that combining ILP and mTSP 

creates a powerful framework for drone-based data collection 

in wireless sensor networks. The two-phase approach - using 

ILP for strategic Access Point’s placement first, then applying 

mTSP for flight path optimization - offers significant 

advantages over single-stage methods. 

Breaking complex problems into sequential stages 

dramatically reduces computational demands in large-scale 

deployments. Our tests reveal that this hierarchical approach 

not only improves scalability but also extends drones’ battery 

life through more efficient routing. The framework effectively 

balances energy constraints with operational requirements. 

These methodologies have broad applications beyond 

academic interest. Environmental monitoring programs, 

emergency responses’ coordination, and commercial delivery 

systems can all benefit from the efficiency gains observed 

herein.  

Future research directions might explore dynamic 

reconfiguration mechanisms that adapt both APs’ placement 

and flight paths in real-time. Incorporating predictive 

optimization through machine learning techniques could 

further enhance systems’ performance.  

With Internet of Things ecosystems rapidly expanding, 

these sophisticated optimization approaches will become 

increasingly vital for building sustainable data collection 

infrastructures capable of addressing future challenges. 
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